博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
drawer principle in Combinatorics
阅读量:6072 次
发布时间:2019-06-20

本文共 905 字,大约阅读时间需要 3 分钟。

Problem 1: Given an array of real number with length (n+ 1) A:

a1,  a2, ... , an2+1.

Prove that there is either an increasing or a decreasing subarray of A with length (n + 1).

 

Proof:

  In order to prove the proposition, we just need to prove that there must be a decreasing subarray of A

with length (n + 1) when there doesn't exist an increasing subarray of A with length (n + 1). Let mdenote

the length of the longest increasing subarray(LIS) beginning with element ai , thus under the assumption above we

have: for all 1 ≤ i ≤n+ 1, 1 ≤ mi ≤ n. Therefore by drawer principle we have mk1 = mk2  = ...  = mk(n+1),(k< k2 <... < k(n+1)).

(otherwise we have nnumbers at most whilst we got n+ 1).We assert that's the disired decreasing array, otherwise if (ki , kj) :

 aki < akj ,we have LIS(mki) ≥ LIS(mkj) + 1, and this results a contradiction.

 

转载于:https://www.cnblogs.com/astoninfer/p/5014063.html

你可能感兴趣的文章
windows 8.1 windows 10 自动应答文件的创建
查看>>
打字效果
查看>>
Cocos2d-x CCEditBox 编辑框
查看>>
[转载] 中华典故故事(孙刚)——23 打破砂锅问到底
查看>>
Go方法
查看>>
ORA-01012: not logged on
查看>>
经验分享: 成功通过AWS Advanced Networking Specialty认证考试
查看>>
linux MySQL安装
查看>>
java 中文繁简体转换工具 opencc4j
查看>>
html本地数据库—存储功能
查看>>
Dapper丶DapperExtention,以及AbpDapper之间的关系,
查看>>
搞IT的同学们,你们在哪个等级__那些年发过的帖子
查看>>
Spring MVC常用注解说明
查看>>
Myeclipse优化配置
查看>>
spring security 入门(1)
查看>>
apache的bin目录下的apxs有什么作用? PHP模块加载运行方式
查看>>
并发容器学习——ConcurrentHashMap
查看>>
金融行业工作报告自动生成系统
查看>>
100元买一百只鸡的问题求解之一
查看>>
Android开发初涉遇到的问题(1)  SimpleAdapter
查看>>